Applications of Integration - 15 Multiple Choice + 6 Free Response Questions
Recommended time: 45 minutes
Solution:
1) Find intersection points: x³ = x → x(x² - 1) = 0 → x = -1, 0, 1
2) On [-1,0]: x³ ≥ x, On [0,1]: x ≥ x³
3) A = ∫-10 (x³ - x) dx + ∫01 (x - x³) dx
4) = [x⁴/4 - x²/2]-10 + [x²/2 - x⁴/4]01
5) = (0 - 0) - (1/4 - 1/2) + (1/2 - 1/4) - (0 - 0) = 1/4 + 1/4 = 1/2
Answer: 1/2
Solution:
1) Find intersection points: x² = 2x → x = 0, 2
2) On [0,2]: 2x ≥ x², so R(x) = 2x, r(x) = x²
3) V = π ∫02 [(2x)² - (x²)²] dx = π ∫02 (4x² - x⁴) dx
4) = π[4x³/3 - x⁵/5]02 = π(32/3 - 32/5)
5) = π(160/15 - 96/15) = 64π/15
Answer: 64π/15
Solution:
1) Find spring constant: F = kx → 8 = k(0.04) → k = 200 N/m
2) W = ∫0.040.08 200x dx = 200[x²/2]0.040.08
3) = 100[(0.08)² - (0.04)²] = 100(0.0064 - 0.0016)
4) = 100(0.0048) = 0.48 J
Answer: 0.48 J
Solution:
1) Find intersection: x² = 4 → x = ±2
2) A(x) = (4 - x²)² = 16 - 8x² + x⁴
3) V = ∫-22 (16 - 8x² + x⁴) dx = 2∫02 (16 - 8x² + x⁴) dx
4) = 2[16x - 8x³/3 + x⁵/5]02
5) = 2(32 - 64/3 + 32/5) = 2(480/15 - 320/15 + 96/15) = 512/15
Answer: 512/15
Solution:
1) favg = (1/(3-0)) ∫03 x² dx
2) = (1/3) ∫03 x² dx = (1/3)[x³/3]03
3) = (1/3)(27/3) = (1/3)(9) = 3
Answer: 3
Solution:
1) Using shell method: V = 2π ∫02 x(x²) dx
2) = 2π ∫02 x³ dx = 2π[x⁴/4]02
3) = 2π(16/4) = 2π(4) = 8π
Answer: 8π